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COLLABORATIVE HIERARCHICAL SPARSE MODELING

Pablo Sprechmann, Ignacio Ramirez and Guillermo Sapiro

University of Minnesota

Yonina Eldar

Technion I. I. T.

ABSTRACT

Sparse modeling is a powerful framework for data analysis and
processing. Traditionally, encoding in this framework is done
by solving an `1-regularized linear regression problem, usu-
ally called Lasso. In this work we first combine the sparsity-
inducing property of the Lasso model, at the individual fea-
ture level, with the block-sparsity property of the group Lasso
model, where sparse groups of features are jointly encoded,
obtaining a sparsity pattern hierarchically structured. This re-
sults in the hierarchical Lasso, which shows important practi-
cal modeling advantages. We then extend this approach to the
collaborative case, where a set of simultaneously coded signals
share the same sparsity pattern at the higher (group) level but
not necessarily at the lower one. Signals then share the same
active groups, or classes, but not necessarily the same active
set. This is very well suited for applications such as source sep-
aration. An efficient optimization procedure, which guarantees
convergence to the global optimum, is developed for these new
models. The underlying presentation of the new framework and
optimization approach is complemented with experimental ex-
amples and preliminary theoretical results.

1. INTRODUCTION AND MOTIVATION

In addition to being very attractive at the theoretical level,
sparse signal modeling has been shown to lead to numerous
state-of-the-art results in signal processing. The standard model
assumes that a signal can be efficiently represented by a sparse
linear combination of atoms from a given or learned dictionary.
The selected atoms form what is usually referred to as the active
set, whose cardinality is significantly smaller than the size of
the dictionary and the dimension of the signal. In recent years,
it has been shown that adding structural constraints to this ac-
tive set has value both at the level of representation robustness
and at the level of signal interpretation (in particular when the
active set indicates some physical properties of the signal), see
[1] and references therein. This leads to group or structured
sparse coding, where instead of considering the atoms as sin-
gletons, the atoms are grouped, and a few groups are active at
a time. An alternative way to add structure (and robustness) to
the problem is to consider the simultaneous encoding of mul-
tiple signals, requesting that they all share the same active set.
This is a natural collaborative filtering approach to sparse cod-
ing, see [2] and references therein.

In this work we extend these models in a number of di-
rections. First, we present a hierarchical sparse model, where

IR and PS contributed equally to this work.

not only a few (sparse) groups of atoms are active at a time,
but also each group enjoys internal sparsity.1 At the conceptual
level, this means that the signal is represented by a few groups
(classes), and inside each group only a few members are ac-
tive at a time. A simple example of this is a piece of music
(numerous applications in genomics), where only a few instru-
ments are active at a time (each instrument is a group), and the
actual music played by the instrument is efficiently represented
by a few atoms of the sub-dictionary/group corresponding to it.
Thereby, this proposed hierarchical sparse coding framework
permits to efficiently perform source separation, where the in-
dividual sources (classes/groups) that generated the signal are
identified at the same time as their efficient representation is
reconstructed (the sparse code inside the group). An efficient
optimization procedure is proposed to solve this hierarchical
sparse coding framework.

Then, we go a step beyond this. Imagine now that we have
multiple recordings of the same two instruments (or different
time windows of the same recording), each time playing differ-
ent songs. Then, if we apply this new hierarchical sparse coding
approach collaboratively, we expect that the different record-
ings will share the same groups (since they are of the same
instruments), but each will have its unique sparsity pattern in-
side the group (since each recording is a different melody). We
propose a collaborative hierarchical sparse coding framework
addressing exactly this.2 An efficient optimization procedure
for this case is derived as well.

In the remainder of this paper, we introduce these new
models and their corresponding optimization, present examples
illustrating them, and provide possible directions of research
opened by these new frameworks, including some theoretical
ones.

2. COLLABORATIVE HIERARCHICAL CODING

2.1. Background: Lasso and group Lasso

Assume we have a set of data samples xj ∈ Rm, j = 1, . . . , n,
and a dictionary of p atoms, assembled as a matrix D ∈ Rm×p,
D = [d1d2 . . .dp]. Each sample xj can be written as xj =
Daj + ε, aj ∈ Rp, ε ∈ Rm, that is, as a linear combination
of the atoms in the dictionary D plus some perturbation ε. The

1While we here consider only 2 levels of sparsity, the proposed
framework is easily extended to multiple levels.

2Note that different recordings can also have different instruments,
so some of them will share the same groups while not necessarily all of
them will be exactly the same.



basic underlying assumption in sparse coding is that, for all or
most j, the optimal reconstruction aj has only a few nonzero
elements. Formally, if we define the cost `0 as the pseudo-norm
counting the number of nonzero elements of aj , ‖aj‖0 := |{k :
akj 6= 0}|, we expect that ‖aj‖0 � p for all or most j. The
`0 optimization is non-convex and known to be NP-hard, so a
convex approximation to it is considered instead, which uses
the `1 norm cost,

min
a
‖a‖1 s.t. ‖xj −Da‖22 ≤ ε. (2.1)

The above approximation is known as the Lasso [3]. A popular
variant is to use the unconstrained version

min
a

1

2
‖xj −Da‖22 + λ ‖a‖1 , (2.2)

where λ is a parameter usually found by cross-validation.

The ‖·‖1 regularizer induces sparsity in the solution aj .
This is desirable not only from a regularization point of view,
but also from a model selection point, where one wants to iden-
tify the relevant features or factors (atoms) that conform each
sample xj . In many situations, however, one wants to repre-
sent the relevant factors not as single atoms but as groups of
atoms. Given a dictionary of p atoms, we define groups through
their indexes, g ⊆ {1, . . . , p}. Given a group g, we define the
subset of atoms of D belonging to it as Dg , and the corre-
sponding set of linear reconstruction coefficients as ag . Define
G = {g1, . . . , g|G|} to be a partition of {1, . . . , p}. The group
Lasso problem was introduced in [4] as

min
a

1

2
‖xj −Da‖22 + λψG(a), (2.3)

where ψG is the group Lasso regularizer defined in terms of G
as ψG(a) =

P
g∈G ‖ag‖2. Note that ψG can be seen as an

`1 on Euclidean norms of the vectors formed by coefficients
belonging to the same group ag . This is a generalization of the
`1 regularizer, as the latter arises from the special case G =
{1, 2, . . . , p}, and, as such its effect on the groups of a is also
a natural generalization of the one obtained with the Lasso: it
“turns on” or “off” atoms in groups.

2.2. The Hierarchical Lasso

The group Lasso trades sparsity at the single-coefficient level
with sparsity at a group level, while, inside each group, the
solution is dense (actually it reduces to a least squares within
the group). As we are interested in maintaining the sparsity at
the coefficient level, we simply re-introduce the `1 regularizer
together with the group regularizer, leading to the proposed Hi-
erarchical Lasso (HiLasso) model,3

min
a

1

2
‖xj −Da‖22 + λ2ψG(a) + λ1 ‖a‖1 . (2.4)

We refer to this regularizer as the `2 + `1.4 In Section 3 we
propose an efficient optimization for (2.4), while in Section 4
we experimentally show the virtues of this model.

3While preparing the camera ready version of this work we leaned
of a simultaneously developed paper, [5], that also proposed this model,
with a different optimization approach. The collaborative framework
presented next is not developed in [5]. See also [6].

4We can similarly define a hierarchical sparsity model based on `0.

2.3. Collaborative Hierarchical Lasso

In numerous applications, one expects that certain collections
of samples xj share the same active components from the dic-
tionary, that is, that the indexes of the nonzero coefficients in
aj are the same for all the samples in the collection. Impos-
ing such dependency in the `1 regularized regression problem
gives rise to the so called collaborative (also called “multitask”
or “simultaneous”) sparse coding problem [2, 7].

More specifically, if we consider the matrix of coefficients
A = [a1, . . . ,an] associated to the reconstruction of the sam-
ples X = [x1, . . . ,xn], the collaborative sparse coding model
is given by

min
a

1

2
‖X−DA‖2F + λ

pX
k=1

‚‚‚ak‚‚‚
2
, (2.5)

where ak is the k-th row of A, that is, the vector of the n differ-
ent values that the coefficient associated to the k-th atom takes
for each sample j. If we now extend this idea to the group
Lasso, we obtain a collaborative group Lasso formulation,

min
a

1

2
‖X−DA‖2F + λψG(A), (2.6)

where the regularizer ψG for a matrix is defined as ψG(A) =P
g∈G ‖Ag‖F , being Ag the submatix formed by all the rows

belonging to group g.5 We chose this notations since this regu-
larizer is the natural extension of the regularizer in (2.3) for the
collaborative case.

To the best of our knowledge, this combination has not yet
been investigated in the literature. In this paper we are moving
one step forward and treat this together with the hierarchical ex-
tension. The combined model that we propose for this problem
(C-HiLasso) can be written as follows

min
A

1

2
‖X−DA‖2F + λ2ψG(A) +

nX
j=1

λ1 ‖aj‖1 . (2.7)

The collaborative group Lasso is a particular case of our model
when λ1 is zero. On the other hand, one can obtain indepen-
dent Lasso for each xi by setting λ2 to zero. This new formu-
lation is particularly well suited when the vectors have missing
components. In this case combining the information from all
the samples is very important in order to lead to a correct rep-
resentation and model (group) selection. This can be done by
slightly changing the data term in (2.6). For each data vector xj
one computes the reconstruction error using only the observed
elements. Note that the missing components do not affect the
other terms of the equation.

3. OPTIMIZATION

3.1. Single-signal problem: HiLasso

In the last decade, optimization of problems of the form of (2.2)
and (2.3) have been deeply studied and there exist very efficient

5While the introduced collaborative HiLasso model is more general,
we consider the separable case for the optimization here developed.



algorithms for solving them. Recently, Wright et. al [8] pro-
posed a framework, SpaRSA, for solving the general problem

min
a
f(a) + λψ(a), (3.8)

under reasonable assumptions. To guarantee convergence f
needs to be a smooth and convex function while ψ only needs
to be finite in Rn. When the regularizer, ψ, is group separable,
the optimization can be subdivided into smaller problems, one
per group. The framework becomes powerful when these sub-
problems can be solved efficiently. This is the case of the Lasso
and group Lasso settings but is not immediate when the regular-
izer is the proposed `1 + `2 norm. In this work we combine the
SpaRSA with the Alternating Direction Method of Multipliers
[9] (ADMOM), to efficiently solve the HiLasso problem.

The SpaRSA algorithm generates a sequence of iterates
{xt}t∈N that, under certain conditions, converges to the solu-
tion of (3.8). At each iteration, xt+1 is obtained solving

min
z

(z− xt)T∇f(xt) +
αt

2

‚‚z− xt
‚‚2

2
+ λψ(z), (3.9)

for some sequence of parameters {αt}t∈N with αt ∈ R+. The
conditions for which the algorithm converges depend on the
choice of αt, see [8] for details.

It is easy to show that (3.9) is equivalent to

min
z

1

2

‚‚z− ut
‚‚2

2
+

λ

αt
ψ(z), (3.10)

where ut = xt− 1
αt∇f(xt). In this new formulation, it is clear

that the first term in the cost function can be separated element-
wise. Thus when the regularization function ψ(z) is group sep-
arable, so is the overall optimization, and one can solve (3.10)
independently for each group,

min
zg

1

2

‚‚zg − utg
‚‚2

2
+

λ

αt
ψg(zg),

which in the case of HiLasso, this becomes,

min
b∈R|g|

1

2
‖b−w‖22 +

λ2

αt
‖b‖2 +

λ1

αt
‖b‖1 , (3.11)

where w = utg and ut = at − 1
αt D

T (Dat − x). This is a
SOCP for which one could use generic solvers. However, this
subproblem needs to be solved many times within the SpaRSA
iterations, so it is crucial to solve it efficiently. For this we use
the ADMOM method [9]. The idea is to solve the artificially
constrained equivalent problem,

min
b

1

2
‖b−w‖22 + λ̃2 ‖β‖2 + λ̃1 ‖b‖1 , s.t. b = β,

where λ̃i = λi/α
t. The algorithm generates a set of iterates

{bt, βt,pt}t∈N+ which converges to the minimum of the Aug-
mented Lagrangian of the problem

Lc(b, β,p) =
1

2
‖b−w‖22 + λ̃2 ‖b‖2 + λ̃1 ‖b‖1

+ pT (b− β) +
c

2
‖b− β‖22 ,

where the elements of p are the so called Lagrangian multipli-
ers, and c is a fixed constant. At each iteration, the variables b
and β are updated, one at a time, by minimizing the Augmented
Lagrangian while letting the remaining fixed:

bt+1 =argmin
b

1

2
‖b−w‖22 + λ̃1 ‖b‖1 + bTp

+
c

2
‖b− β‖22 , (3.12)

βt+1 =argmin
β

λ̃2 ‖β‖2 − β
Tp +

c

2

‚‚bt+1 − β
‚‚2

2
,

pt+1 =p + c(bt+1 − βt+1).

For convenience in the notation we omitted the super-indexes
for the iterates at step t, just explicitly indexing them at step
t + 1. The update for b is separable into scalar subproblems
on the coordinates of b. The optimality conditions on the sub-
gradient of each of this scalar problems leads to a simple vari-
ant of the well known soft-thresholding operator, S(wi, λ) =
sgn(wi)max {0, |wi| − λ}. For convenience, we use the nota-
tion S(w, λ) to denote the vector obtained when applying the
soft-thresholding operator (with parameter λ) to each element
of w. On the other hand, the update for β is not separable into
scalar subproblems. However its optimality condition is given
by β′ + λ̃2∂ ‖β′‖2 − b′ 3 0, which is exactly the one leading
to the vector shrinkage operator, Sv , described in [4] for the
group Lasso (actually much simpler, since there is no matrix
multiplication involved):

Sv(b, λ̃2) =

»
1− λ̃2

‖b‖2

–
+

b.

Then both updates can be written in closed form and computed
very efficiently:

b =
1

c+1
S(w+cβ− p, λ̃1), β =

1

c
Sv(p+ cb, λ̃2).

The algorithm is very robust and converges in very few iter-
ations to its optimum, thereby obtaining a very efficient ap-
proach to solve the subproblem (3.11). The SpaRSA framework
then becomes a very interesting approach for the proposed Hi-
Lasso. The complete algorithm is summarized in Algorithm 1.
An additional speed up is obtained by bypassing ADMOM when
a whole group is not active. From the optimality conditions of
(3.11) it follows that, if 0 is a solution when λ1 = 0 (standard
group Lasso), it is also a solution in the general case. This can
be simply checked by evaluating Sv(w , λ̃2) > 0.

3.2. Optimization of the Collaborative HiLasso

We now propose an optimization algorithm to efficiently solve
the collaborative HiLasso. The main idea is to use ADMOM
to divide the overall problem into two subproblems: one that
breaks the multi-signal problem into n single-signal `1 regres-
sions, and another that treats the multi-signal case as a single
group Lasso-like problem. In this way we take advantage of
the separability of each term as shown in Figure 1. We define a
constrained optimization problem,

min
1

2
‖X−DA‖2F+ λ1

X
j

‖aj‖1+λ2ψG(B) s.t.A=B.



Result: The optimal point x∗
Set t := 0;
Choose a factor η > 1 and constants c > 0 and
0 < αmin < αmax;
Choose an initial x(0) = (x1,x2, . . . ,x|G|);
while stopping criterion is not satisfied do

Choose αt ∈ [αmin, αmax];
Set ut ← xt − 1

αt∇f(xt);
while stopping criterion is not satisfied do

% Here we use the group separability of (3.10) and
% solve (3.11) for each group;
for i = 1 to |G| do

if Sv(w, λ̃2) > 0 then
Set r := 0;
Choose an initial p0, β0,b0;
while stopping criterion is not satisfied do

br+1 = 1
c+1
S(ut

i + cβr − pr, λ̃1);

βr+1 = 1
c
Sv(pr + cbr+1, λ̃2);

pr+1 = pr + c(br+1 − βr+1);
Set r ← r + 1 ;

end
Set xt+1

g := br+1 ;
else

Set xt+1
g := 0;

end
end
Set αt ← ηαt;

end
Set t← t+ 1 ;

end
Algorithm 1: HiLasso optimization algorithm.

The ADMOM iterations are given by (we omitted the super-
index for variables at iteration t for notation convenience).

At+1 =argmin
A

1

2
‖X−DA‖2F + λ1

X
j

‖aj‖1 +

Tr(ATPt+1) +
c

2
‖B−A‖2F , (3.13)

Bt+1 =argmin
B

c

2

‚‚B−At+1
‚‚2

F
+ Tr(BTPt+1)

+ λ2ψG(B), (3.14)

Pt+1 =P + c(A−B).

Solving for At+1: Problem (3.13) can be separated into n
single-signal subproblems by updating one column of the ma-
trix A at a time,

min
aj

1

2
‖x−Daj‖22 + pTj aj +

c

2
‖aj− b‖22 + λ1 ‖aj‖1 .

This problem can be solved using the SpaRSA framework. The
idea is to consider the first three terms of the cost as f(·) in
Equation (3.8). The associated computational cost is equivalent
to the one of the Lasso, since the regularizer is the standard `1
norm.

Solving for Bt+1: The problem given by (3.14) is group sepa-
rable, as a direct consequence of the separability of ψG . Thus,
we need to solve |G| optimization problems of the form,

min
Bg

c

2

‚‚Bg −At+1
g

‚‚2

F
+ Tr(Pt+1

g BT
g ) + λ2 ‖Bg‖F ,

Fig. 1. Structure of the problem in terms of coupling.

where Ag , Bg and Pg are the |g|×n sub-matrices of A, B and
P associated with the group g respectively. We express them
as column vectors (each with |g|×n components) by concate-
nating their columns, obtaining bg, βg and pg respectively, and
rewrite the optimization problem in vectorial form as

min
b
λ2 ‖b‖2 − pTg b +

c

2

‚‚at+1
g − b

‚‚2

2
. (3.15)

This problem is identical to (3.12) and can be reduced to a
group Lasso problem by simply changing variables and thus,
it is solved using vectorial thresholding.

4. EXPERIMENTAL RESULTS

We start by comparing our model with the standard Lasso and
group Lasso using synthetic data. We created |G| dictionaries,
Di, with 64 atoms of dimension 64, with i.i.d. Gaussian entries.
The columns were normalized to have unit `2 norm. Then we
randomly chose two groups to be active at each time (on all the
signals). Sets of N = 200 testing signals were generated, one
per active group, as linear combinations of k � 64 elements of
the dictionaries, xij = Dia

i
j . These signals were also normal-

ized. The mixtures were created by summing these signals and
(eventually) adding gaussian noise of standard deviation σ. The
generated testing signals have a hierarchical sparsity structure
and while they share groups, they do not necessarily share the
sparsity pattern inside the groups.

We built a single dictionary by concatenating the sub-
dictionaries, D = [D1, . . . ,D|G|], and use it to solve the
Lasso, group Lasso, HiLasso and C-HiLasso problems. Table 1
summarizes the Mean Square Error (MSE) and Hamming dis-
tance of the recovered coefficient vectors. We observe that our
model is able to exploit the hierarchical structure of the data
as well as the collaborative structure. From a modeling point
of view, we observe that the group Lasso selects in general the
correct blocks but it does not give a sparse solution within them.
On the other hand, Lasso gives a solution that has nonzero el-
ements belonging to groups that were not active in the original
signal, leading to a wrong model selection. HiLasso gives a
sparse solution that picks atoms form the correct groups but
still presents some minor mistakes. For the collaborative case,
in all the tested cases, no coefficients were selected outside the
correct active groups and the recovered coefficients are consis-
tently the best ones. This robustness comes from the fact that
the active groups are collaboratively found using the informa-
tion present in all the signals. We consider the USPS digits
dataset that has been shown to be well represented in the sparse
modeling framework [10]. Here the signals are vectors contain-
ing the unwrapped gray intensities of 16×16 images. We chose
two digits and summed them up to create a mixture image. We



σ Lasso Glasso HiLasso C-HiLasso
0.1 41.7/ 22.0 117.3 / 361.6 33.0 / 19.8 16.3 / 13.3
0.2 56.4 / 21.6 118.2 / 378.3 39.9 / 22.7 24.9 /17.1
0.4 96.5 / 22.7 137.8/ 340.3 65.6 / 19.5 59.5 /27.4
k Lasso Glasso HiLasso C-HiLasso
8 38.8 / 22.0 118.4 / 318.2 27.2 / 19.5 9.6 / 16.2

12 120.0 / 36.2 116.6 /350.4 70.4 / 26.5 41.3 / 29.1
16 164.1 / 43.9 109.3 / 338.6 110.0 / 32.2 55.1 / 35.0
|G| Lasso Glasso HiLasso C-HiLasso
4 108.0 / 27.8 191.6 /221.7 100.9 / 29.8 74.2 / 30.2
8 120.0 / 36.2 116.6 /350.4 70.4 / 26.5 41.3 / 29.1

Table 1. Active sets MSE (we show them multiplied by 103) and
Hamming distance (MSE / Hamming) for the tested methods. In the
first case we vary the noise level while we keep |G| = 8 and k = 8

fixed. In the two other tables the signals are noise free and we first set
|G| = 8 while changing k, and then set k = 12 while changing the
number of groups. For each method the regularization parameters were
the ones for which the best results where obtained.

created 200 random mixture images and then analyzed them
with the different methods. In this case there is no ground truth
active set, and we used as a measure of performance the sepa-
rating error defined as 1

NR

PR
i=1

PN
j=1

‚‚xij − x̂ij
‚‚2

2
, where xij

is the component corresponding to source i in the signal j, and
x̂ij is the recovered one.

Using the usual training-testing split for USPS we first
learned a dictionary for each digit. We then created a single
dictionary by concatenating them. In Figure 2 we show the
separation error obtained in different situations. As in the syn-
thetic case, only the collaborative method was able to success-
fully detect the true active sources. We show in Figure 2 some
examples of the recovered active sets for each method.

We also used the digits dataset to experiment with missing
data. We randomly discarded an average of 60% of the pixels
per mixed image and then applied the C-Hilasso. The algorithm
is capable of correctly detect which digits are present in the im-
ages. In Figure 3 we show some examples. Note that this is a
quite different problem than the one commonly addressed in the
matrix completion literature. Here we do not aim to recover sig-
nals that all belong to a unique unknown sub-space, but signals
that are the combination of two non-unique spaces to be auto-
matically selected from the available dictionary. Such unknown
spaces have common models/groups for all the signals in ques-
tion (the coarse level of the hierarchy), but not necessarily the
exact same atoms and therefore not necessarily belong to the
same sub-spaces. Both levels of the hierarchy are automatically
detected, e.g., that the groups are those corresponding to “3”
and “5,” and the exact atoms (sub-spaces) in each group, these
last ones possibly different for each signal in the set. While we
consider that the possible sub-spaces are to be selected from the
provided dictionary, in Section 5 we discuss learning such dic-
tionaries as well. In such case, the standard matrix completion
problem becomes a particular case of the C-HiLasso framework
(with a single group and all the signals having the same active
set, sub-space, in the group), naturally opening numerous the-
oretical questions for this new more general model.6 Finally,

6Prof. Carin and collaborators have new results on the case of a
single group and signals in possible different sub-spaces of the group,
an intermediate model between standard matrix completion and C-
HiLasso (personal communication).

Digits Lasso Glasso HiLasso C-HiLasso
3+5 74.1 80.1 68.6 63.4

3+5+n 87.9 95.4 92.9 77.3
2+7 61.1 60.8 58.7 42.6

2+7+n 75.4 65.2 64.7 53.7

Fig. 2. . (Top) The table shows the separating errors (we show them
multiplied by 103) for the digits dataset. We show the results for sep-
arating digits 3 and 5, and 2 and 7, with and without additive noise of
standard deviation σ = 0.1. We used sets of 200 copies. (Bottom) Ac-
tive sets recovered for the group Lasso, Lasso, HiLasso and C-HiLasso
for a given example. Each block corresponds to the coefficients as-
sociated with the digits displayed bellow. The active coefficients are
displayed in read. Only C-HiLasso manages to perfectly recover the
correct models (with the lowest separating error), while HiLasso per-
forms very well also.

we used C-HiLasso to separate overlapping textures in an im-
age. We chose 8 textures form the Brodatz dataset and trained
one dictionary for each one of them (these form the 8 groups of
the dictionary). Then we created an image as the sum of two
textues (the testing images were not used in the training stage).
In Figure 4 we show results. The overall group Hamming dis-
tance obtained for C-HiLasso is 0.003, showing that the correct
groups, and only them, were practically selected all the time.

5. DISCUSSION

In this paper we have introduced a new framework of collab-
orative hierarchical sparse coding, where multiple signals col-
laborate in their encoding, sharing code groups (models) and
having (possible disjoint) sparse representations inside the cor-
responding groups. An efficient optimization approach was de-
veloped, which guarantees convergence to the global minimum,
and examples illustrating the power of this framework were pre-
sented. At the practical level, we are currently working on the
applications of this proposed framework in a number of direc-
tions, including collaborative instruments separation in music;
and signal classification, following the demonstrated capability
to collectively select the correct groups/models.

At the theoretical level, a whole family of new problems
is opened by this proposed framework. A critical one is the
overall capability of selecting the correct groups and thereby
of performing correct model selection and source separation.
Let us consider for example the case of only two groups (so
no sparsity at the group level) and a single signal composed
by the linear combination of atoms from each group. Then, it
is easy to show that the cross-mutual coherence between the
groups plays a critical role. Let us call µi, i = 1, 2, the internal



Fig. 3. . (Top) We show two examples (one per row) of the recov-
ered digits from a mixture with 60% of missing components. We first
show the original mixture image, then the image with the missing pix-
els highlighted in red, and finally the digits recovered. (Bottom) Here
we show a comparision of the active sets recovered using the Lasso
(left) and the C-HiLasso (right) methods. The active sets for the set of
signals (as shown in Figure 2) are placed as columns. The coefficients
corresponding to digits 3 and 5 fall inside the area delimited by the red
horizontal lines. While C-HiLasso recovers the correct sources in all
the cases, the Lasso method makes several mistakes.

coherence of the atoms of the group i, and µ1,2 the one between
the groups (maximal normalized correlation between an atom
of group 1 with an atom of group 2). Then it is easy to show
that uniqueness of the separation can be guaranteed if (2k1 −
1)µ1 + 2kµ1,2 < 1 and (2k2 − 1)µ2 + 2k1µ1,2 < 1, with ki
the respective sparsity levels inside each group (this is a weaker
bound that the more stringent one developed by [11]).

This needs to be extended to actual sparsity at the group
level and to the collaborative case. Note of course that con-
sidering a single active group is a particular case of our model
(see [10] for works in this case), thereby an overall theoretical
framework for our proposed collaborative hierarchical frame-
work will automatically include numerous of the existing re-
sults in sparse coding.

Finally, we have also developed a framework for learn-
ing the dictionary for collaborative hierarchical sparse coding,
meaning the optimization is simultaneously on the dictionary
and the code. As it is the case with standard dictionary learn-
ing, this is expected to lead to significant performance improve-
ments (again, see [10] for the particular case of this with a sin-
gle group active at a time).
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Fig. 4. . Results for the texture segmentation. One example of the
mixture and the C-HiLasso separated textures are shown. This is fol-
lowed by the active set diagram (as in Figure 3), Lasso on top (with
class selection wrongly all over the 8 textures) and C-HiLasso on bot-
tom, where only the 2 corresponding groups are selected.
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